
Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

61

Comparative Study of ROS on Embedded System for a Mobile Robot

Min Su Kim, Raimarius Delgado, Byoung Wook Choi

Submitted: 16th August 2018, accepted: 25th October 2018

DOI: 10.14313/JAMRIS_3-2018/19

Abstract:
This paper presents a comparative study of Robot
Operating System (ROS) packages for mobile robot
navigation on an embedded system. ROS provides various
libraries and tools in developing complex robot software.
We discuss the process of porting ROS to an open
embedded platform, which serves as the main controller
for a mobile robot. In the case of driving the robot, ROS
provides local path planners such as the base, elastic
band, and timed elastic band. The local planners are
compared and analyzed in terms of accuracy in tracking
the global path conducted on a robot model using Gazebo,
3D simulation tool provided by ROS. We also discussed the
difference in performance of deploying ROS packages on
a personal computer and on the embedded environment.
Experiments were performed by controlling two different
mobile robots with results showing that tracking error is
highly dependent on the goal tolerance. This study will
serve as a promising metric in improving the performance
of mobile robots using ROS navigation packages.

Keywords: Robot Operation System, mobile robot,
embedded system, navigation, SLAM, path planner

1. Introduction
Mobile robots are widely used in various fields,

especially in scientific, industrial, and governmen-
tal sectors. However, the combination of devices and
software are getting more complex and difficult to de-
velop. Robot Operating System (ROS), one of the most
popular robotic framework, is an open source meta
OS that provides control algorithms and supports dif-
ferent hardware devices for mobile robot operation
[1]. ROS focuses on software modularization and easy
redistribution. As a result, the development of robots
has become easier and innovative software are con-
veniently shared within the community [2], [3].

Development time and expenses are very essential
factors to consider in robot distribution. In the case
of commercial robots, cheaper price has been proven
to improve market stability and helped in increasing
sales [2]. On the contrary, expensive robots have trou-
ble in selling and are very hard to access. In this paper,
we utilize a low cost and high efficient open embed-
ded platform for the main controller of mobile robots
using ROS [4]. This minimizes the development costs

and enhances portability as embedded systems are
cheaper and smaller in comparison to the widely used
personal computers.

However, software development on an embed-
ded environment is difficult because all the software
must be compatible with each other and with the
embedded platform itself. The availability of techni-
cal documents and support is very limited. This pa-
per provides the detailed procedure of successfully
porting ROS on a Raspberry Pi 3 (RPi3), one of the
leading open embedded platform used in robotic ap-
plications [5].

Controlling a mobile robot requires considerable
amount of computation. ROS provides a navigation
package that contains global and local path planning
algorithms [4]. The local path planners included in
ROS are defined as base [6], elastic band (EBand)
[7], [8], and timed elastic band (TEB) [9]. Simultane-
ous localization and mapping (SLAM) is made easier
with ROS [10]–[12].To utilize the navigation package,
distance sensors is attached to a mobile robot such
as a laser rangefinder (LRF) to detect the obstacles
within the environment and measure the distance be-
tween the detected obstacle and the robot to perform
an avoidance scheme.

In this paper, the performance of the local planners
is analyzed and compared in terms of tracking a given
global path on a robot model designed using Gazebo,
the 3D simulation tool included in ROS. We designed
a robot model based on a commercial mobile robot us-
ing SolidWorks. As Gazebo requires high 3D graphics
that could not be supported by the RPi3, simulations
were performed on a desktop computer. Actual driv-
ing experiments were conducted on two commercial
mobile robots. The RPi3 serves as the main controller,
responsible for acquiring sensor data,measuring the
position of the mobile robot within the environment,
calculating the distance between the robot and the ob-
stacles, and driving the mobile robots.

2. ROS Basic Concepts
ROS is often called a “meta” OS. Although ROS is not

a traditional operating system, it provides a variety of
services [1]. ROS processes are called nodes which are
independent with each other managed by a master
node. Message passing between nodes is classified into:
a topic or a service. Unlimited number of nodes can ei-
ther subscribe or publish on the same topic. Topics are

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

62 Articles62

ed by the user, which supplies the odometry infor-
mation, facilitates the sensor stream, and processes
velocity commands sent to the physical components
of the robot [4], [13]. The navigation stack should be
configured in accordance to the physical character-
istics and dynamics of the mobile robot to perform
at a high level.

The software architecture of the navigation stack
is shown in Fig. 2 [13]. The main component of the
navigation stack is move_base package, which con-
sists of software for path planning, map building, and
recovery behaviors in case the robot gets stuck. The
urg_node is a node created to acquire sensor data
from an LRF and publishes it as a topic called ‘/scan’.
The mobile_node is a device node for a specific mo-
bile robot as mentioned earlier.

Fig. 2. Software architecture of the navigation stack

Navigation stack operates in several steps for the
robot to reach a specific position within the environ-
ment. The move_base acquires data from the ‘/scan’
topic of urg_node and creates a global and local
costmap which calculates the position of the mobile
robot and the obstacles. The global planner gener-
ates the shortest path available for the mobile robot
to reach the target position and the local planner is
responsible for tracking the global path. Velocity com-
mands generated by the local planner is published
as the ‘/cmd_vel’ topic and is subscribed by the mo-
bile_node. Feedback control is realized with the mo-
bile_node calculating the position of the mobile robot
using encoder data and publishing it as the ‘/tf ’ and ‘/
odom’ topics received by the move_base.

3.1. Global Planner
The navigation stack contains of both global and

local path planners. The global planner calculates the
shortest available path from the current position of
the mobile robot to the specified target position.Ho-
wever, the actual path that the robot is that of the local
planner. Thus, this paper focuses more on analyzing
the tracking accuracy of the mobile robot with the
different local planners available in ROS. The global
planner is configured with the default parameters as
explained in [4], [6], [14].

3.2. Local Planner
The local planner tracks the global path and per-

forms feedback control considering the actual posi-
tion and movement of the mobile robot within the
environment. There are several types of availalble lo-
cal planners, including the base local planner [4], [6],
[15], elastic band (EBand) [7], [8], and timed elastic
band (TEB) [9].

usually used for continuous data streams such as sen-
sor data and robot status. On the other hand, a service
only provides communication between a host and a cli-
ent service node. It is recommended to use services for
remote procedure calls that terminates quickly.

A robot software based on ROS is divided into hard-
ware-independent and device-specific parts as shown
in Fig. 1. The hardware-independent part is composed
of ROS core, other ROS native software, and algorithms
shared by different developers to the ecosystem. The
device-specific part contains the local information of
the robot, which includes the connected sensors, kine-
matics, and other necessary information to operate the
robot [5]. The only task of a user is to create the device-
specific node according to the specifications of the ro-
bot in hand. The hardware-independent part does not
require any modification on the code itself, the user is
only advised to change the configurations according to
the required functionality.

Fig. 1. An Example of using Hardware-Independent
Software and Device-Specific Drivers

As an example, a device-specific robot driver can
be used with a variety of hardware-independent
ROS packages such as teleop_twist_keyboard and
move_base. The teleop_twist_keyboard is a package for
remote operation using keyboard, and the move_base
is a package for navigation. Both packages publish
messages which contain linear and angular velocities
of mobile robot. The device-specific robot driver
receives these messages and converts them to joint
space velocities for actual operation of the mobile
robot. The speed of the point space for robot operation
varies depending on the robot’s kinematics, so the re-
lated software should be changed accordingly, but in
ROS, adding a small device-specific software can uti-
lize various hardware-independent software without
modification. Some robot manufacturers provide the
device-specific node for easier handling of their users
[5]. Otherwise, you have to create your own.

3. ROS Navigation Stack
The navigation stack is a hardware-independent

software included in ROS to simplify navigation con-
trol of mobile robots. Adevice node should be creat-

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

63Articles 63

3.2.1. Base Local Planner
Fig. 3 shows the basic concept of the base local

planner. Possible trajectories in the velocity space are
generated discretely sampled. Forward simulation is
performed for each sampled trajectory for a short pe-
riod to predict the outcome. The simulation results are
scored according to metrics that incorporates charac-
teristics such as proximity to obstacles, proximity to
the target position, proximity to the global path, and
speed. Trajectories that fails to meet any of the metrics
are discarded. The trajectory with the highest score is
selected and is published as the velocity commands for
the mobile robot [6]. These steps are repeated until the
mobile robot reaches the target position.

Fig. 3. Base local planner

3.2.2. EBand Local Planner
The basic concept of the EBand local planner is

illustrated in Fig. 4. EBand searches for a path as it
extends to both sides with external force, imitating
the elastic behavior of a rubber band, and generates
a path by shrinking the inside and reducing the search
path by the pulling force. If additional, obstacles are
encountered or detected, modify the path to the same
principle, including obstacles [7], [8].

Fig. 4. Eband Local Planner

3.2.3. TEB Local Planner
Fig. 5 is a planner supplemented by adding tem-

poral parameters to the Eband approach. As a whole,
it follows the characteristics of EBand and optimizes
every moment of trajectory deformation and minimi-
zes the target cost function instead of generating and
applying force [9].

Fig. 5. TEB local planner

In this study, various global planners and local
planners are applied to mobile robots, and the move-
ment according to the type of planner is compared
and analyzed, and the navigation path according to
the parameters is experimented.

4. Simulation
Prior to the actual experiment using the robot,

a simulation experiment was conducted to select an
appropriate local planner. In the simulation, we ob-
served the navigation of the robot using three differ-
ent local planners in two situations: with an obstacle
and without obstacles. The local planners in evalu-
ation were base local planner, EBand, and TEB local
planner. Among the parameters that can customize
the behavior of each planner, only those related to the
physical limits of the mobile robot were configured
and the rest were set to default value.

4.1. Robot Model
In this study, various types of simulations were

performed in a 3D environment using Gazebo, the
built-in simulation tool available in ROS. All objects
in the Gazebo environment are required to be defined
in the Unified Robot Description Format (URDF), in-
cluding the mobile robot, sensors, and obstacles. The
mobile robot model is designed using the computer
aided designing tool, SolidWorks, as it offers a URDF
converter for easier integration to ROS and Gazebo.
The 3D model of the mobile robot and the designed
simulation environment in Gazebo is shown in Fig. 6.

The necessary nodes to utilize the ROS naviga-
tion package are created. We used an LRF model
based on the Hokuyo URG-04LX-UG01LRF to detect
obstacles and analyze the movements of the robot.
As mentioned in section 2, ROS provides a node for
the LRF called urg_node which acquires sensor data
from the hardware and publishes them as the topic
called ‘/ scan’. The data flow of the urg_node is shown

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

64 Articles64

in Fig. 7 [10].The mobile_node that specifies the kin-
ematics of the mobile robot, facilitates the sensor
stream, and processes velocity commands is created
for a two-wheel differential drive mobile robot. The
the size is configured as 0.58 in width and 0.44 in
length. The diameter of the wheels is 240, and the dis-
tance between the center of each wheel is 380.

4.2. Results of Simulation

4.2.1. Base Local Planner
Fig. 8 a) shows the results of simulation using the

base local planner in an environment without obsta-
cles. It shows the changes in robot position, linear ve-
locity and angular velocity after setting the goal posi-
tion to x = 3 m, y = 0 m. After the navigation started,
the linear velocity was accelerated to 0.5 m/s and the
robot moved forward. The linear speed then deaccel-
erated to 0.1 m/s, which is the minimum operating
speed of the robot.

After approximately 11 seconds from the start,
the angular velocity changed, and the position of the
robot in the y axis changed. Because of the chang-
es in the linear velocity and the angular velocity, the
mobile robot reached x = 2.98 m, y = 0.9 m near the
target position of x = 3 m, y = 0 m, which ended the
navigation procedure. Reduction in linear velocity
after reaching 0.5 m/s and the changes in angular
velocity after 10 seconds is observed. The linear ve-
locity deceleration appears to reduce the velocity at
which the robot reaches the target position. If the
robot is actuated constantly at a high speed when
it reaches the target, an oscillation may occur, vio-
lating the acceleration limit. The changes in angular

velocity also prevent the oscillations. Since the small
oscillation may occur even when the robot moves at
the minimum speed of 0.1 m/s, the angular velocity
was changed to reduce the x variation of the robot in
the Cartesian space.

a) without obstacles

b) with an obstacle

Fig. 8. Base local planner

On the other hand, Fig. 8 b) shows the result of
simulation with an obstacle. It shows changes in ro-
bot position, linear velocity and angular velocity for
the same target position. After the navigation started,
the robot moved forward to a point 0.5 m away from
the obstacle. A deviation occurs to avoid the obstacle
and reached the point x = 3.07 m, y = 0.06 m close
to the target position without a collision. When ap-
proaching the obstacle, we can observe that a slight
deceleration occurs when the robot approaches the
obstacle to reduce the possibility of collision.

Fig. 6. Modeling in SolidWorks (Left) and simulation
environment in Gazebo (Right)

Fig. 7. LRF node flow

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

65Articles 65

4.2.2. EBand Local Planner
Fig. 9 a) shows the results of simulation using

the EBand local planner in the environment without
obstacles. It shows changes in robot position, linear
velocity and angular velocity after setting the goal po-
sition to x = 3 m, y = 0 m.

a) without obstacles

b) with an obstacle

Fig. 9. EBand local planner

After the navigation started, the robot started
moving forward while its heading angle was slight-
ly shaking. After 6 seconds from the start, the linear
velocity of the robot was decelerated and the de-
celerated velocity was maintained until the robot
reached the target position. After reaching x = 3.03,
y = 0.00, the robot stopped for a while. And then,
an oscillation occured while adjusting the heading
angle.

Fig. 9 b) shows the result of simulation using
EBand in the environment with an obstacle. It shows
changes in robot position, linear velocity and angu-
lar velocity after setting the goal position to x = 3 m,
y = 0 m. The robot moved directly towards the obsta-
cle resulting to a collision.

4.2.3. TEB Local Planner
Fig. 10 a) shows the results of simulation using

TEB in the environment without obstacles. It shows
changes in robot position, linear and angular velocity.

a) without obstacles

b) with an obstacle

Fig. 10. TEB local planner

The goal position is set to x = 3 m, y = 0 m. After
the navigation started, the linear velocity of the robot
accelerated to 0.5 m/s, and the robot moved forward.
And then, it stopped at x = 2.89, y = 0. Fig. 10 b) shows
the results of simulation using teb local planner in the
environment with an obstacle. It shows changes in ro-

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

66 Articles66

bot position, linear velocity and angular velocity after
setting the goal position to x = 3 m, y = 0 m. In the
environment with an obstacle, the TEB planner was
not able to compute the velocity of robot on time due
to high computation load. As a result, the robot failed
to follow the path created by the global planner and
could not reach the target.

The results of the simulation experiments show
that the EBand and TEB local planners both produced
exemplary results in tracking a target position in an
environment in case of no obstacles. But, base local
planner is the only local planner that can reach the
goal in the existence of an obstacle, and others are not.

5. Experimental Specifications
The system structure of the experimental testbed

including the hardware devices and mobile robots
are shown in Fig. 11. We have selected an ARM-based
a embedded platform, RPi3, for its portability and low
cost in comparison to desktop computers. The latest
available development environment is shown in the in
Fig. 12. The RPi3 is installed with Ubuntu 16.04 with
the Linux kernel version of 4.1.21-v7+. ROS Kinetic
Kame was selected as it is the latest stable version
available in the ROS repository. In this study, we only
tackle the basic features of ROS without considering
the strict scheduling deadlines required in robust
control of robotic applications. ROS was implemented
in a straight forward manner following the user guide
in [16]. In more advanced control applications that re-
quires real-time environment for an embedded plat-
form, compatibility of ROS with the other software
components is a huge issue that is complex owing to
the limited availability of systematic documentations
and technical support.

Fig. 11. System Structure to Control Two Mobile
Robots

Fig. 12. Software architecture of the main controller

6. Experiment & Results
Base local planner in Section 4 is applied to the

mobile robot in consideration of the various planners
tested through simulation. The performance differen-
ce between two mobile robots is shown according to
the presence of obstacles. Change the size of the va-
riable of the ‘xy_tolerance’ according to the parameter
setting. The performance of the global planner is not
significantly different. Therefore, only the local plan-
ner is applied to the experiment and compared and
analyzed. The specifications of each robot are shown
in the following Table 1.

Table. 1. Robot Specifications
Robot Name Tetra DS IV Stella B2

Wheel
diameter

240 mm 150 mm

Distance
between
wheels

380 mm 289 mm

Width 0.58 m 0.41 m

Length 0.44 m 0.32 m

In the experiment, we used the navigation stack to
move the mobile robot from one point to another. The
distance between the starting point and the destina-
tion is 3, and the obstacle is installed at the starting
point of 1.5 m. Fig. 13 shows two mobile robots and
experimental environment. The left side of the figure
is Tetra DS IV and the right side is Stella B2.

Fig. 13. The experimental environment

Fig. 14. Path of mobile robots

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 12, N° 3 2018

67Articles 67

Fig. 14 shows the motion of the mobile robot. After
setting the target position to , the mobile robot moved
forward. And the difference value of xy_tolerance [15]
parameter was changed.

The smaller the tolerance value is, the closer the
target value is reached. Due to the nature of the lo-
cal planner, the direction of detour is not constant
because the calculation is changed every moment
at the designated location. You can also see that the
Stella B2 has a cleaner line out of the path than the
Tetra DS IV. And the closer the shape of the mobile
robot is to the circle, the better it follows the planned
path.

7. Conclusion and Future Work
Robotics is an important and exciting area of re-

search that requires the integration of various devic-
es and complex software. Even for the embedded sys-
tem, the various libraries and tools provided by ROS
make it easier to access and integrate hardware and
software. Moreover, various devices can be connected
to ROS through ROS drivers and reduce the complexi-
ty of the development of the function by using various
software components of ROS.

Local planners for SLAM and navigation func-
tions of ROS packages were evaluated both on PC
simulation and embedded system for various mo-
bile robots. This study showed the usefulness of
robot development through ROS and control of the
mobile robot can be implemented more easily and
quickly.

Finally, we conducted comparative study for the
navigation of mobile robots according to planners
when using ROS package. Results showed that de-
veloper should be more careful about using ROS
packages and much effort is needed to get the de-
sired results. Detailed research will be carried out
later to obtain better results when using ROS pack-
ages.

ACKNOWLEDGEMENT
This study was financially supported by Seoul Na-

tional University of Science and Technology.

AUTHOR
MinSu Kim – Dept. of Electrical and Information
Engineering, Seoul National University of Science
and Technology, Nowon-gu, 01811, Seoul, Republic of
Korea. E-mail:min50190@seoultech.ac.kr
Raimarius Delgado – Dept. of Electrical and Informa-
tion Engineering, Seoul National University of Science
and Technology, Nowon-gu, 01811, Seoul, Republic of
Korea. E-mail:raim223@seoultech.ac.kr
ByoungWook Choi* – Dept. of Electrical and Informa-
tion Engineering, Seoul National University of Science
and Technology, Nowon-gu, 01811, Seoul, Republic of
Korea. E-mail:bwchoi@seoultech.ac.kr

*Corresponding author

REFERENCES
 [1] “ROS.org | About ROS.” http://www.ros.org/

about-ros/.
 [2] M. Quigley et al., “ROS: an open-source Robot

Operating System,” ICRA workshop on open
source software. Vol. 3. No. 3.2. 2009.

 [3] Y. S. Pyo, ROS Robot Programming. RubyPaper
Press, 2015.

 [4] K. Zheng, “ROS Navigation Tuning Guide,” arXiv
preprint arXiv:1706.09068, 2017.

 [5] S.-Y. Jeong et al., “A Study on ROS Vulnerabili-
ties and Countermeasure,” Proceedings of the
Companion of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction. ACM,
2017, pp. 147–148.

 DOI:10.1145/3029798.3038437.
 [6] P. Marin-Plaza, A. Hussein, D. Martin, A. de la

Escalera, “Global and Local Path Planning Study
in a ROS-Based Research Platform for Autono-
mous Vehicles,” Journal of Advanced Transpor-
tation, vol. 2018, 2018, pp. 1–10.

 DOI:10.1155/2018/6392697.
 [7] S. K. Gehrig, F. J. Stein, “Elastic bands to enhance

vehicle following,”Intelligent Transportation Sys-
tems, 2001. Proceedings. 2001 IEEE. IEEE, 2001,
pp. 597–602.

 DOI:10.1109/ITSC.2001.948727.
 [8] S. Quinlan, O. Khatib, “Elastic bands: connecting

path planning and control,” Robotics and Auto-
mation, 1993. Proceedings, 1993 IEEE Interna-
tional Conference on. IEEE, 1993, pp. 802–807.

 DOI:10.1109/ROBOT.1993.291936.
 [9] M. Keller, F. Hoffmann, C. Hass, T. Bertram, and

A. Seewald, “Planning of Optimal Collision Avoid-
ance Trajectories with Timed Elastic Bands,”
IFAC Proceedings Volumes, vol. 47, no. 3, 2014,
pp. 9822–9827.

 DOI:10.3182/20140824-6-ZA-1003.01143.
[10] M. G. Ocando, N. Certad, S. Alvarado, A. Ter-

rones, “Autonomous 2D SLAM and 3D mapping
of an environment using a single 2D LIDAR and
ROS,”Robotics Symposium (LARS) and 2017 Bra-
zilian Symposium on Robotics (SBR), 2017 Latin
American. IEEE, 2017, pp. 1–6.

 DOI:10.1109/SBR-LARS-R.2017.8215333.
[11] R. Reid, A. Cann, C. Meiklejohn, L. Poli, A. Boeing,

and T. Braunl, “Cooperative multi-robot naviga-
tion, exploration, mapping and object detection
with ROS,” Intelligent Vehicles Symposium (IV),
2013 IEEE. IEEE, 2013, pp. 1083–1088.

 DOI:10.1109/IVS.2013.6629610.
[12] J. M. Santos, D. Portugal, R. P. Rocha, “An evalu-

ation of 2D SLAM techniques available in Robot
Operating System,”Safety, Security, and Rescue
Robotics (SSRR), 2013 IEEE International Sym-
posium on. IEEE, 2013, pp. 1–6.

 DOI:10.1109/SSRR.2013.6719348.
[13] “navigation/Tutorials/RobotSetup – ROS Wiki.”

http://wiki.ros.org/navigation/Tutorials/Robot-
Setup.

[14] M. Lundgren, “Path Tracking for a Miniature Ro-
bot,”Masters, Department of Computer Science,
University of Umea (2003). p. 9.

[15] “base_local_planner – ROS Wiki.” http://wiki.
ros.org/base_local_planner?distro=melodic.

[16] “kinetic/Installation –ROS Wiki.” http://wiki.ros.
org/kinetic/Installation.

